Recent Advances in Bistatic Radio-based Simultaneous Localization and Mapping 6G Test Network Finland Workshop

Ossi Kaltiokallio

Ossi Kaltiokallio

Quick Recap of Bistatic Radio-SLAM

C Tampere University

- Radio-based bistatic SLAM:
 - UE position, orientation, clock offset/drift
 - Localize interaction points of NLoS paths
 - Technical basis comes from the ability to measure propagation delays and angles
- Importance of Radio-SLAM:
 - Improves localization accuracy
 - Possible to localize the UE in the absence of LoS
 - Dependence on infrastructure can be reduced enabling localization even using a single transmission from one BS
- Mainstream Radio-SLAM approaches:
 - Filtering-based solutions that recursively estimate the joint state of the UE and map by sequential processing
 - Snapshot approaches that solve the SLAM problem for a single UE location without any prior information nor kinematic models

Experimental mmWave Measurements

Table 1: Measurement parameters

Center frequency	60 GHz
Bandwidth	400 MHz
SCS	120 kHz
Antenna array size	16×4
3dB beamwidth	${pprox}10$ degrees
Signal type	PRS (DL)
PRS comb factor	2
PRS symbol per slot	1

- Stationary BS and moving UE. Both equipped with Sivers Semionductors 60 GHz beamforming EVKs allowing for electrical beamforming and beamsweaping
- Experimental mmWave measurements available at [1]

E. Rastorgueva-Foi, O. Kaltiokallio, Y. Ge, M. Turunen, J. Talvitie, B. Tan, M.F. Keskin, H. Wymeersch, and M. Valkama, April 26, 2024, "Millimeter-Wave Radio SLAM: 60 GHz Indoor Sensing Dataset", IEEE Dataport, doi: https://dx.doi.org/10.21227/xskh-dk87.

Snapshot SLAM (2D/azimuth domain)

- The BS location $\mathbf{p}_{\mathsf{BS}} \in \mathbb{R}^2$ and orientation $\alpha_{\mathsf{BS}} \in [-\pi, \pi]$ are assumed known.
- The measurement set is denoted using

$$\mathcal{Z} = \{\mathbf{z}_0, \mathbf{z}_1 \dots, \mathbf{z}_N\}$$

in which $\mathbf{z}_i = [\tau_i, \phi_i, \theta_i]^\top$ denotes the channel parameters of the *i*th path, estimated using the method presented in [2].

- The associated indices are $\mathcal{I} = \{0, 1, \dots, N\}$.
- Using Z, the aim is to estimate the UE state,

$$\mathbf{x} = [\mathbf{p}_{\mathsf{UE}}^\top, \; \alpha_{\mathsf{UE}}, \; b_{\mathsf{UE}}]^\top \in \mathbb{R}^4,$$

and landmark locations,

$$\mathbf{p}_i \in \mathbb{R}^2 \; \forall i \in \mathcal{I}.$$

I-FI Tampere University

^[2] E. Rastorgueva-Foi, O. Kaltiokallio, Y. Ge, M. Turunen, J. Talvitie, B. Tan, M.F. Keskin, H. Wymeersch, and M. Valkama. "Millimeter-Wave Radio SLAM: End-to-End Processing Methods and Experimental Validation,", in IEEE Journal on Selected Areas in Communications, vol. 42, no. 9, pp. 2550-2567, Sept. 2024

Snapshot SLAM

• Using the LoS component i = 0, the UE orientation is given by

$$\hat{\alpha}_{UE} = \operatorname{atan2}(y, x),$$
 (1)

where $[x, y]^{\top} = -\mathbf{R}(-\theta_0)\mathbf{u}_0$ and in which \mathbf{R} denotes a counterclockwise rotation matrix, θ_0 is the AoA and \mathbf{u}_0 a unit vector along the AoD.

Snapshot SLAM

• Using the LoS component i = 0, the UE orientation is given by

$$\hat{\alpha}_{\mathsf{UE}} = \operatorname{atan2}(y, x),\tag{1}$$

where $[x, y]^{\top} = -\mathbf{R}(-\theta_0)\mathbf{u}_0$ and in which \mathbf{R} denotes a counterclockwise rotation matrix, θ_0 is the AoA and \mathbf{u}_0 a unit vector along the AoD.

• AoD and AoA can be represented by unit vectors \mathbf{u}_i and \mathbf{v}_i , allowing to express the UE position as:

$$\mathbf{p}_{\mathsf{UE}} = \mathbf{p}_{\mathsf{BS}} + d_i \gamma_i \mathbf{u}_i - d_i (1 - \gamma_i) \mathbf{v}_i \tag{2}$$

where $d_i=c(\tau_i-b_{\rm UE})$ and $\gamma_i\in[0,1]$ is unknown. From (2), a cost for ${\bf x}$ can be derived

$$J(\mathbf{x}) = \sum_{i \in \mathcal{I}} \eta_i J_i(\mathbf{x}) \tag{3}$$

and $J(\mathbf{x})$ can be minimized wrt. \mathbf{x} in closed-form to obtain $\hat{\mathbf{x}}$.

Snapshot SLAM

• Using the LoS component i = 0, the UE orientation is given by

$$\hat{\alpha}_{\mathsf{UE}} = \operatorname{atan2}(y, x),\tag{1}$$

where $[x,\ y]^\top = -\mathbf{R}(-\theta_0)\mathbf{u}_0$ and in which \mathbf{R} denotes a counterclockwise rotation matrix, θ_0 is the AoA and \mathbf{u}_0 a unit vector along the AoD.

AoD and AoA can be represented by unit vectors \mathbf{u}_i and $\mathbf{v}_i,$ allowing to express the UE position as:

$$\mathbf{p}_{\mathsf{UE}} = \mathbf{p}_{\mathsf{BS}} + d_i \gamma_i \mathbf{u}_i - d_i (1 - \gamma_i) \mathbf{v}_i \tag{2}$$

where $d_i=c(\tau_i-b_{\rm UE})$ and $\gamma_i\in[0,1]$ is unknown. From (2), a cost for x can be derived

$$J(\mathbf{x}) = \sum_{i \in \mathcal{I}} \eta_i J_i(\mathbf{x}) \tag{3}$$

and $J(\mathbf{x})$ can be minimized wrt. \mathbf{x} in closed-form to obtain $\hat{\mathbf{x}}$.

 Given x̂, the landmark locations can be estimated for every NLoS propagation path i = 1, 2, ..., N, independently, e.g., by solving the following nonlinear optimization problem

$$\hat{\mathbf{p}}_{i} = \underset{\mathbf{p}_{i}}{\operatorname{minimize}} \left(\mathbf{z}_{i} - \mathbf{h}(\mathbf{x}, \mathbf{p}_{i}) \right)^{\top} \boldsymbol{\Sigma}_{i}^{-1} (\mathbf{z}_{i} - \mathbf{h}(\mathbf{x}, \mathbf{p}_{i})), \quad (4)$$

where $\mathbf{h}(\mathbf{x},\mathbf{p}_i)$ and $\boldsymbol{\Sigma}_i$ denote the mean and covariance of the likelihood function.

Multi-bounce Signals

• For an *m*-bounce signal, the UE position is given by:

$$\mathbf{p}_{\mathrm{UE}} = \mathbf{p}_{\mathrm{BS}} + d_i \gamma_i^{\mathrm{I}} \mathbf{u}_i - d_i \gamma_i^{m} \mathbf{v}_i \\ + \sum_{j=1}^{m-1} (\mathbf{p}_i^{j+1} - \mathbf{p}_i^{j}), \quad (5)$$

where $\gamma_i^1 \in [0, 1]$ and $\gamma_i^m \in [0, 1]$ are unknown and they represent the fraction of the propagation distance along \mathbf{u}_i and \mathbf{v}_i , respectively, and $\gamma_i^1 + \gamma_i^m \leq 1$.

- Since the terms in the sum are unknown, (5) does not admit a unique solution and therefore, exploiting multi-bounce signals for SLAM is very challenging.
- Multi-bounce signals will cause significant SLAM performance degradation since the multi-bounce and single-bounce models have a mismatch.
- To overcome this deficit, we can try to identify multi-bounce signals and discard them from \mathcal{Z} when solving the SLAM problem [3].

Tampere University

^[3] O. Kaltiokallio, E. Rastorgueva-Foi, J. Talvitie, Y. Ge, H. Wymeersch, and M. Valkama. "Robust snapshot radio SLAM", submitted to IEEE TVT 2024. [Online]. Available: https://arxiv.org/abs/2404.10291

Minimal set	$J_0(\mathbf{x}, \mathcal{I})$	$J_1(\mathbf{x}, \mathcal{I})$	$J_2(\mathbf{x}, \mathcal{I})$	$J_3(\mathbf{x}, \mathcal{I})$	$J_4(\mathbf{x}, \mathcal{I})$	$J_5(\mathbf{x}, \mathcal{I})$	$J(\mathbf{x}, \mathcal{I})$
$\mathcal{I} = \{0, 1\}$							

() Use a *minimal subset* (e.g. $\mathcal{I} = \{0, 1\}$) of the channel parameter estimates to compute an initial solution

(-T) Tampere University

Minimal set	$J_0(\mathbf{x}, \mathcal{I})$	$J_1(\mathbf{x}, \mathcal{I})$	$J_2(\mathbf{x}, \mathcal{I})$	$J_3(\mathbf{x}, \mathcal{I})$	$J_4(\mathbf{x}, \mathcal{I})$	$J_5(\mathbf{x}, \mathcal{I})$	$J(\mathbf{x}, \mathcal{I})$
$I = \{0, 1\}$	2.1e-27	6.5e-29	5.6e-07	1.4e-07	4.2e-03	1.0e-03	

- **()** Use a minimal subset (e.g. $\mathcal{I} = \{0, 1\}$) of the channel parameter estimates to compute an initial solution.
- According to the principles of RANSAC, the channel parameter estimates are partitioned into a set of inliers and a set of outliers based on the initial solution.

¹-□ Tampere University

Minimal set	$J_0(\mathbf{x}, \mathcal{I})$	$J_1(\mathbf{x}, \mathcal{I})$	$J_2(\mathbf{x}, \mathcal{I})$	$J_3(\mathbf{x}, \mathcal{I})$	$J_4(\mathbf{x}, \mathcal{I})$	$J_5(\mathbf{x}, \mathcal{I})$	$J(\mathbf{x}, \mathcal{I})$
$\mathcal{I} = \{0, 1\}$	2.1e-27	6.5e-29	5.6e-07	1.4e-07	4.2e-03	1.0e-03	2.15e-06

- **()** Use a minimal subset (e.g. $\mathcal{I} = \{0, 1\}$) of the channel parameter estimates to compute an initial solution.
- According to the principles of RANSAC, the channel parameter estimates are partitioned into a set of inliers and a set of outliers based on the initial solution.
- **3** The problem is re-solved using the inlier set and a cost for the solution is computed, denoted by $J(\mathbf{x}, \mathcal{I})$.

I-TI Tampere University

Minimal set	$J_0(\mathbf{x}, \mathcal{I})$	$J_1(\mathbf{x}, \mathcal{I})$	$J_2(\mathbf{x}, \mathcal{I})$	$J_3(\mathbf{x}, \mathcal{I})$	$J_4(\mathbf{x}, \mathcal{I})$	$J_5(\mathbf{x}, \mathcal{I})$	$J(\mathbf{x}, \mathcal{I})$
$\mathcal{I} = \{0, 5\}$	2.8e-28	1.4e-03	1.4e-03	1.7e-04	5.6e-05	2.6e-29	1.64e-05

- Use a minimal subset of the channel parameter estimates to compute an initial solution
- According to the principles of RANSAC, the channel parameter estimates are partitioned into a set of inliers and a set of outliers based on the initial solution.
- **③** The problem is re-solved using the inlier set and a cost for the solution is computed, denoted by $J(\mathbf{x}, \mathcal{I})$.
- **4** The above three steps are performed for all minimal subsets...

「-□ Tampere University

Minimal set	$J_0(\mathbf{x}, \mathcal{I})$	$J_1(\mathbf{x}, \mathcal{I})$	$J_2(\mathbf{x}, \mathcal{I})$	$J_3(\mathbf{x}, \mathcal{I})$	$J_4(\mathbf{x}, \mathcal{I})$	$J_5(\mathbf{x}, \mathcal{I})$	$J(\mathbf{x}, \mathcal{I})$
$\mathcal{I} = \{0, 1\}$	2.1e-27	6.5e-29	5.6e-07	1.4e-07	4.2e-03	1.0e-03	2.15e-06
$I = \{0, 2\}$	3.6e-28	5.4e-07	1.3e-29	1.1e-08	4.0e-03	9.7e-04	2.15e-06
$\mathcal{I} = \{0, 3\}$	4.9e-27	1.1e-06	9.1e-08	5.7e-30	3.9e-03	9.5e-04	2.15e-06
$\mathcal{I} = \{0, 4\}$	7.9e-31	1.1e-03	1.1e-03	1.4e-04	1.9e-30	1.1e-05	1.58e-05
$\mathcal{I} = \{0, 5\}$	2.8e-28	1.4e-03	1.4e-03	1.7e-04	5.6e-05	2.6e-29	1.64e-05

- Use a minimal subset of the channel parameter estimates to compute an initial solution
- According to the principles of RANSAC, the channel parameter estimates are partitioned into a set of inliers and a set of outliers based on the initial solution.
- The problem is re-solved using the inlier set and a cost for the solution is computed, denoted by J(x, I).
- **(4)** The above three steps are performed for all minimal subsets and the solution is the one that minimizes $J(\mathbf{x}, \mathcal{I})$.

TI Tampere University

Robust Snapshot SLAM in mixed LoS/NLoS conditions [3]

[3] O. Kaltiokallio, E. Rastorgueva-Foi, J. Talvitie, Y. Ge, H. Wymeersch, and M. Valkama. "Robust snapshot radio SLAM", submitted to IEEE TVT 2024. [Online]. Available: https://arxiv.org/abs/2404.10291

Ossi Kaltiokallio

Tampere University

Beyond SLAM – Mapping with Double-bounce Signals [4]

[4] O. Kaltiokallio, Y. Ge, J. Talvitie, E. Rastorgueva-Foi, H. Wymeersch, and M. Valkama. "Bistatic mmWave Mapping in Obstructed Environments Using Double-bounce Signals", 25th IEEE International Workshop on Signal Processing Advances in Wireless Communications, Sept. 2024.

Ossi Kaltiokallio

I-FI Tampere University

Beyond SLAM – Materials Characterization [5]

[5] A. Karttunen, J. Talvitie, O. Kaltiokallio, E. Rastorgueva-Foi, and M. Valkama. "Towards Semantic Radio SLAM with Landmark Feature Extraction in mmWave Networks", submitted to 5th IEEEInternational Symposium on Joint Communications & Sensing.

Ossi Kaltiokallio

September 26, 2024

Recent Advances in Bistatic Radio-based Simultaneous Localization and N $\,$ 16 / 17

Conclusions

- Tampere University
- Radio-based bistatic SLAM enables accurate localization using a single transmission from just one BS even in the absence of LoS.
- It is important to identify multi-bounce signals so that they can be either discarded or exploited.
- Correctly utilizing double-bounce signals they can be turned from foe to friend.
- Interesting research directions towards semantic multi-bounce radio SLAM.
- Not a one man show, special thanks to:

Jukka Talvitie, Elizaveta Rastorgueva-Foi, Matias Turunen, Aki Karttunen, Bo Tan, Mikko Valkama, Yu Ge, Musa Furkan Keskin, Henk Wymeersch